ответ:36 см^2
Объяснение:Пусть сторона основания равна а.
Тогда высота основания h = a*sqrt(3)/2
S = 1/2 *a*a*sqrt(3)/2 = 9*sqrt(3) => a = 6 см
Одно из боковых рёбер пирамиды перпендикулярно снованию.
Его длина M =h*tg(30) = h/sqrt(3) = 3 см
Два других равны между собой, их длины находим из условия:
N^2 =M^2 +a^2 => N = 3*sqrt(5) см
Площадь каждой из перпендикулярных боковых граней:
S1 = 1/2 *M*a = 9 см^2
Высота третьей боковой грани P = 2*N = 6 см
Её площадь S2 = 1/2 *a*P = 18 см^2
Площадь боковой поверхности пирамиды
Sбок = 2*S1 +S2 = 36 см^2
Всё понятно?
1. Верно (свойство радиуса, проведённого в точку касания).
2. Неверно. Вписанный угол равен половине центрального соответствующего угла.
3. Неверно. Вписанный угол, опирающийся на полуокружность, равен 90° (так как полуокружность — это дуга в 180°, а градусная мера вписанного угла измеряется половиной градусной меры соответвующией дуги. Откуда вписанный угол равен 180° : 2 = 90°).
4. Верно (теорема о пересекающихся хорд в окружности).
5. Верно. Если расстояние от центра окружности до прямой больше радиуса, то у этой прямой и окружности нет общих точек.
7,499 см (расстояние от центра окружности до прямой) > 7,49 см (радиус окружности). Поэтому, по выше сказанному, у окружности и прямой нет общих точек.
6. Неверно. Такая дуга равна 30°*2 = 60° (смотрите в пункт 3).
7. Верно (свойство отрезков касательных, проведённых из одной точки).
8. Верно (по определению радиуса окружности).
9. Неверно. Прямая называется секущей по отношению к окружности только тогда, когда она имеет с окружностью две общие точки).
10. Верно (свойство касательных).
1. Там опечатка. с пересекает не АВ а АМ в т. С
Треугольники АВD и АВС - равны по катету АВ и острому углу ВАС = ВАD
Значит и другие катеты тоже равны:
ВС = BD, что и треб. доказать.
2. АВС и АВ1С1 - два остроугольных тр-ка.
Пусть АВ = А1В1. Проведем высоты и медианы к этим сторонамСК и С1К1 - медианы, СМ и С1М1 - высоты. По условию СК = С1К1, а СМ = С1М1
Тогда пр. тр. СКМ = С1К1М1 (по катету и гипотенузе)
Значит и другие катеты равны: КМ = К1М1
Так как КВ = АВ/2 = К1В1 = А1В1/2: МВ = М1В1
Значит пр. тр-ки СВМ и С1В1М1 равны по двум катетам. Значит равны и гипотенузы и углы:
угол В = углу В1, ВС = В1С1
В итоге получили:
Треугольники АВС и А1В1С1 равны по двум сторонам и углу между ними (АВ = А1В1, ВС = В1С1, угол В = углу В1). Что и требовалось доказать