Даны точки А(4;-2;-2), В(1;1;-1), С(0;2;-2) и Д(3;-1;-3).
Доказательством, что четырёхугольник АВСД является ромбом, служит равенство длин сторон и неравенство диагоналей.
Расстояние между точками находим по формуле:
d = √((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²)
АВ ВС АС
4,3589 1,73205 5,6569
19 3 32 квадраты
СД ВД АД
4,3589 3,4641 1,73205
19 12 3 квадраты.
Как видим, АВСД не ромб, а параллелограмм. Противоположные стороны равны, диагонали не равны.
рассмотрим треугольник ahc-прямоуг., равнобедренный ah=ch=x, ac^2=ah^2+ch^2,
2^2=x^2+x^2
4=2x^2
2=x^2
x=корень из 2
рассмотрим треугольник chb, по теореме пифагора
cb^2=ch^2+hb^2
cb^2= 3^2+(корень из 2)^2=9+2=11
cb= корень из 11