60 см^2.
Объяснение:
1) Диагональ и две смежные стороны прямоугольника образуют прямоугольный треугольник, для сторон которого верна теорема Пифагора.
2) Пусть х см - меньшая сторона прямоугольника, тогда (17-х) см - его большая сторона.
х^2 + (17-х)^2 = 13^2
х^2 + 289 - 34х + х^2 - 169 = 0
2х^2 - 34х + 120 = 0
х^2 - 17х + 60 = 0
D = 289 -240 = 49
x1 = (17-7):2 = 5
x2 = (17+7):2 = 12 - не удовлетворяет условию.
3) Меньшая сторона прямоугольника равна 5 см, тогда большая его сторона равна 17-5=12(см).
S = 5•12 = 60(см^2)
60 см^2.
Объяснение:
1) Диагональ и две смежные стороны прямоугольника образуют прямоугольный треугольник, для сторон которого верна теорема Пифагора.
2) Пусть х см - меньшая сторона прямоугольника, тогда (17-х) см - его большая сторона.
х^2 + (17-х)^2 = 13^2
х^2 + 289 - 34х + х^2 - 169 = 0
2х^2 - 34х + 120 = 0
х^2 - 17х + 60 = 0
D = 289 -240 = 49
x1 = (17-7):2 = 5
x2 = (17+7):2 = 12 - не удовлетворяет условию.
3) Меньшая сторона прямоугольника равна 5 см, тогда большая его сторона равна 17-5=12(см).
S = 5•12 = 60(см^2)
Объяснение:
Получается это линейное уравнение.
Выразим:
а) M(-3;2) и C(4;6)
y=kx+b это линейное уравнение.
2 = -3k+b
6 = 4k+b
Выразим b через k.
2+3k=b
6-4k=b
Получается:
2+3k=6-4k
7k=4
k=4/7
Узнаем b:
16/7+b=6
b=3+5/7
Функция:
y=x*(4/7)+3+5/7
б) E(9;1) и K(5;-3)
1=9k+b
-3=5k+b
b=1-9k
b=-3-5k
1-9k=-3-5k
4=4k
k=1
Узнаем b:
1=9+b
b=-8
y=x-8