Так как треугольник прямоугольный, то <A (см.рисунок во вложении) = 90 - <C = 90 – 60 = 30 градусов. Как известно, в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Таким образом если этот катет, т.е. катет ВС обозначить Х, то гипотенуза т.е. сторона АС =2Х. По теореме Пифагора (АС)^2 = (AB)^2 + (BC)^2. Подставив в это уравнение принятые и известный отрезки имеем (2Х)² = 10² + X², или 4Х²= 10²+ X² или 3Х²= 100. Отсюда Х²= 100/3 и малый катет, т.е. Х = √(100\3) = 10/√3. Площадь прямоугольного треугольника равна половине произведения его катетов. Т.е. S = (АВ*ВС)/2 = 10*10/2√3 = 50/√3
Проведем перпендикуляры BS1 и MS2. (M - центр AB) Обозначим плоскость треугольника ABS1-желтым цветом. Плоскость β голубым. Поскольку прямая AB лежит в плоскости желтого треугольника,то все ее точки лежат в этой плоскости,а значит точка M тоже лежит в этой плоскости.(аксиома 2). Мы можем интуитивно заявить что отрезок MS2 лежит в плоскости этого треугольника (Да это так ,но этот факт требует доказательства) Итак подтвердим наше предположение: Прямые MS2 || BS1 параллельны, как два перпендикуляра к одной плоскости. А поскольку параллельные прямые всегда лежат в одной плоскости,то прямые MS2 и BS1 лежат в одной плоскости. То есть точки S2,M,B,S1 лежат в одной плоскости. Мы знаем что точки M,B,S1 лежат в плоскости желтого треугольника. То поскольку через 3 данные точки можно провести плоскость и при том только одну. То они не могут лежат в другой плоскости отличной от плоскости желтого треугольника,иначе это противоречило бы первому постулату. А поскольку вместе с ними в одной плоскости весит и точка S2,то она тоже лежит в плоскости треугольника. То и прямая MS2 лежит в плоскости этого треугольника. Ну теперь все очевидно :MS2 -средняя линия треугольника ABS1,откуда: MS2=BS1/2=12/2=6 см ответ:6 cм