Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
1. ОН - медиана и высота равнобедренного треугольника AOD, ОН - перпендикуляр к плоскости сечения, ОН = 15 см. ΔАОН: ∠АНО = 90°, по теореме Пифагора АН = √(АО² - ОН²) = √(289 - 225) = √64 = 8 см AD = 2АН = 16 см Высота цилиндра равна AD, так как ABCD - квадрат. Н = 16 см R = 17 см Sбок = 2πRH = 2π · 17 · 16 = 544π см²
2. SO = AB√3/2 как высота равностороннего треугольника, 6√3 = АВ√3/2 АВ = 12 Образующая l = SA = AB = 12 Радиус основания R = AB/2 = 6 Sполн = Sбок + Sосн = πRl + πR² = πR(l + R) Sполн = π · 6 · (12 + 6) = 6π · 18 = 108π
ответ:60 см