М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
20kokosik26
20kokosik26
28.01.2021 09:15 •  Геометрия

Длина диагонали квадрата равна 4 корень 5см его площадь равна

👇
Ответ:
GoYana0000
GoYana0000
28.01.2021
Известно, что площадь квадрата равна квадрату его стороны. Кроме того, диагональ квадрата в √2 раз больше его стороны. Если диагональ равна 4√5, то сторона равна 4√5/√2=2√10. Тогда площадь равна (2√10)²=40см²
4,8(13 оценок)
Открыть все ответы
Ответ:
abc71
abc71
28.01.2021

Чертеж и весь счет во вложении.

Заметим, что в правильной четырехугольной пирамиде основание высоты совпадает с точкой пересечения диагоналей основания (точка О на рисунке). Следовательно, отрезок SO перпендикулярен плоскости ABC. Так как прямая AC лежит в плоскости ABC, то SO⊥AC (угол SOC прямой). Тогда SC можно найти из теоремы Пифагора для прямоугольного треугольника SOC. Нам понадобятся длины катетов SO и OC.

AC - диагональ квадрата ABCD. Значит, AC = AD*√2. OC = AC/2.

Диагональным сечением, очевидно, является треугольник SAC. Его площадь известна из условия.  Зная ее и AC, находим SO.

Дальше вычисляем SC.

ответ: 10 см.



Площадь диагонального сечения правильной четырехугольной пирамиды равно 48 см в квадрате а сторона о
4,8(79 оценок)
Ответ:
paninadiana15
paninadiana15
28.01.2021
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый. 
Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE • AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a • h. Теорема доказана.
Теорема о площади параллерограмма (докозательство)
4,6(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ