Докажите, что у пирамиды боковые грани которой наклонены к плоскости основания под одним углом, точка о (точка пересечения диагоналей) центр вписанной окружности.
По теореме, если у пирамиды равные двугранные углы при основании, тогда в многоугольник основания можно вписать окружность. В постановке задачи - доказать, что точка О - точка пересечения диагоналей, центр вписанной окружности - следовательно в основе лежит четырехугольник.Так как в четырехугольник можно вписать окружность, то это может быть одна из следующих фигур: 1. Квадрат 2. Ромб 3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай. 1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано. 2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано. 3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.
Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.
1. Квадрат
2. Ромб
3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай.
1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано.
2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано.
3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.
Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.