1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Решение.
Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3
PABC=AC+CB+AH+HB=2CB+2HB=16+6=22
ответ: 22
2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.
S=1/2p*r
r=2s/p
Т.к треугольник ABC-равнобедренный, то AB=AC=30
По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24
По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)
х^2+y^2=R^2
R^2=20
R=√20=2√5
Так как точка N лежит на ОХ, то у=0. Координаты т.N будут
N (-2√5; 0)
Найдем координаты т.L
2^2+y^2=20
y^2=16
y1=-4
y2=4
Значит т.L может иметь два расположения L1 (2; -4) и L2 (2; 4). Выберем т.L2 (2;4).
Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию:
SΔOLN=0.5*NO*LP
NO=R=2√5
Точка Р имеет координаты т.Р (2;0).
LP=√(2-2)^2 + (4-0)^2=√16=4
SΔOLN=0.5*2√5*4=4√5
ответ: 4√5