Если известна только гипотенуза, можно найти лишь интервал в котором будет расположен размер высоты. В этом легко наглядно добиться, если нарисовать окружность и принять диаметр в ней за гипотенузу. Любой треугольник в этой окружности с имеющейся гипотенузой и катетами, проведёнными к любой точке окружности будет прямоугольным, так ка вписанный угол опирается на дугу в 180°. Очевидно, что высоты эти тр-ков будут разными, но наибольшая высота будет равна радиусу окружности, то есть половине гипотенузы. h=√((c/2)·(c/2))=√(c²/4)=c/2.
Понятно, что против 8 и 10 острые углы :) а что против 12? не вдаваясь в подробности (теорему косинусов), скажем, что если сумма квадратов меньших равна квадрату большей стороны - тогда треуг. прямоуг. (у нас не так). если сумма квадратов меньших меньше квадрату большей стороны - тогда треуг. остроуг (у нас как раз так). если сумма квадратов меньших больше квадрата большей стороны - тогда треуг. тупоуг. (у нас не так). все это можно получить из теоремы косинусов - там косинус острого положительный, косинус прямого=0, косинус тупого отрицательный. у нас треуголник- остроугольный.
S=AB*AD*sin30=12*16*1/2=96lv²