1. Сумма одной пары внешних углов треугольника равна 194°, а сумма другой пары внешних углов - 321°. Найдите внутренние углы треугольника.
Пусть данный треугольник АВС.
Сумма внешних углов при вершине А=321°. Внешние углы при одной вершине вертикальные и равны, тогда каждый из них равен 321°:2=160,5°
Сумма внешнего и внутреннего угла треугольника, смежного с ним, равна 180°. ∠ВАС=180°-160,5°=19,5°
Сумма внешних углов при вершине С=194°, а каждый из них равен 194:2=97°. Смежный с ним внутренний ВСА=83°
Угол АВС=180°-(19,5°+83°)=77,5°
Углы ∆ АВС равны 19,5°; 87°; 77,5°
---------------------
2. Биссектриса равнобедренного треугольника, проведенная из вершины при основании, образует с основанием угол, равный 34 градуса. Какой угол образует медиана, проведенная к основанию, с боковой стороной?
Пусть данный треугольник АВС. АМ - биссектриса угла А, ВН - медиана проведенная к АС.
Углы при основании равнобедренного треугольника равны, и
∠ А=∠С=34°•2=68°.
∠ АВС=180°-2•68°=44°
Медиана равнобедренного треугольника, проведенная к основанию, еще и его высота и биссектриса. Она делит угол пополам. Угол, образованный медианой с боковой стороной, -∠ НВА=44°:2=22°
сделаем построение по условию
АСС1А1 - квадрат
АОС - равнобедренный треугольник
R=10 см -боковая сторона
d=8см -высота
по теореме Пифагора
АВ =√(R^2-d^2)=√(10^2-8^2)=√36=6 см
АС=2*АВ=2*6=12 см
АСС1А1 - квадрат
АС=А1С1=АА1=СС1= 12 см
Найдите площадь сечения
S= AC*AA1=12*12=144 см2
ОТВЕТ 144 см2