Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
В треугольнике BMC cos угла BCM = 1/2 = CM/BC, отсюда CM = BC/2 = 14√3.
Проведём высоты KH1 и MH2. В треугольнике CMH2 cos угла H2CM = 1/2 = CH2/MC, отсюда CH2 = (14√3)/2 = 7√3 = BH1, так как треугольник BKH1 = треугольнику CMH2 по гипотенузе и острому углу. KM = BC - 2BH1 = 28√3 - 14√3 = 14√3.
В треугольнике CMH2 sin угла MCH2 = (√3)/2 = MH2/MC, отсюда MH2 = (MC√3)/2 = (14√3*√3)/2 = 21.
Площадь трапеции BKMC = ((KM + BC)/2)*MH2 = ((14√3 + 28√3)/2)*21 = 441√3.
ответ: 441√3