3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
Медиана ВД делит сторону АС на АД=СД=b/2. Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам: ВО/ОД=ВС/СД=a*2/b. ВД=ВО+ОД=ВО+b*BO/2a=BO(2a+b)/2a. Тогда ВО/ВД=BO*2a/BO(2a+b)=2a/(2a+b). Аналогично ВЕ/ЕА=ВС/АС=а/b. AB=BE+EA=BE+b*BE/a=BE(a+b)/a, значит ВЕ/АВ=а/(а+b). Площади Sabd=1/2*АB*BД*sin B, Sbeo=1/2*BE*BO*sin B. Тогда Sbeo/Sabd=BE*BO/AB*BД=а/(а+b) * 2a/(2a+b)=2a²/(a+b)(2a+b). Медиана разбивает треугольник на два треугольника одинаковой площади, значит Sabc=2Sabd, Sabd=S/2. Тогда Sbeo=S*a²/(a+b)(2a+b) Площадь АДОЕ равна Sадое=Sabd-Sbeo=S/2-S*2a²/(a+b)(2a+b)=S(1/2-2a²/(a+b)(2a+b))=S*b*(3a+b)/2(a+b)(2a+b).
возьмем ВС как Х
тогда АВ=семь пятых икс
АС= четыре третьих икс
ВС= икс
уравнение такое
7 4
х+х+х=16.8
5 3
21 20
х+х+х=16.8
15 15
11 8
3х=16
15 10
168 56
х=:
10 15
х=4,5
ВС=4,5 метра