Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
Если Вы еще не изучали, что такое синус угла, можно обойтись без него. См. рисунок. В параллелограмме сумма углов, прилежащих к одной стороне, равна 180° Следовательно, угол С равен 180°-150°=30°. Опустив из С высоту на продолжение АD, получим прямоугольный треугольник с острым углом СDН, равным 30°, т.к. он - накрестлежащий при пересечении параллельных прямых секущей СD. Наверняка Вам уже известно, что сторона прямоугольного треугольника, противолежащая углу 30 ° равна половине гипотенузы этого треугольника. Высота СН равна половине СD СD=2*СН=4 см Но в параллелограмме противоположные стороны равны и параллелльны. Следовательно, АВ=СD=4 см