Из точки а, расположенной вне окружности радиуса 8 см, проведена секущая длиной 10см, которая разделена окружностью на два когруэнтных отрезка. найдите расстояние от точки а до центра окружности
Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. То есть АВ*АК=АС². Или АВ*(АВ-2АС)=АС². Подставляем известные значения: 12(12-2АС)=АС² или АС²+24*АС-144. АС= -12+12√2 = 12(√2-1). 2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е). Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см. Тогда радиус описанной окружности находим по формуле R=abc/[4√p(p-a)(p-b)(p-c). R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25. 3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK). 20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Признак равенства по гипотенузе и острому углу.Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по двум катетам.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и гипотенузе.Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. Признак равенства прямоугольных треугольников по катету и острому углу.Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
АС= -12+12√2 = 12(√2-1).
2.Соединим середину хорды АВ (точку D) с серединой хорды АС (точка Е).
Отрезок DF перпендикулярен АС (расстояние от середины хорды АВ до хорды АС), тогда AF=3(так как DA=5см, а DF=4см), EF = 3см (6-3=3) а DЕ = 5см. DЕ - средняя линия треугольника АВС, поэтому ВС=10см.
Тогда радиус описанной окружности находим по формуле
R=abc/[4√p(p-a)(p-b)(p-c).
R = 10*12*10/[4√(16*6*6*4)=300/48 = 6,25.
3.Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
Имеем: АС*АВ = АК*АD или 20*DK = 25*(25-DK).
20*DK=625 -25*DK; 45DK=625. DK = 13и8/9.