Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
Объяснение:
Для того, чтобы доказать равенство углов, докажем равенство треугальников ABD и BAC.
У них есть общая сторона AB, две другие их стороны попарно равны по условию задачи: BD=AC и BC=AD. Данные треугольники равны по трём сторонам.
В равных треугольниках соответственные элементы равны. Значит, угол ADB равен углу ACB, поскольку они противолежат общей стороне АВ в равных треугольниках.
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
ответ:
объяснение:
от 0 до п/2 -1 четверть
от p/2 do p/4 -2
ot p do 3/2p -3
ot 3/2p do 2p-4