Допускаю, что решение не относится к конструктивной геометрии. К простой - относится. Возможно, оно Вам Понадобятся : циркуль, линейка, угольник с прямым углом для построения параллельных прямых, транспортир, карандаш. 1). Чертим окружность данного радиуса. 2).Под ней чертим произвольную прямую с точкой касания с окружностью в точке Н. 3). От Н вправо откладываем НК, приближенно равную по длине данной стороне. 4). От К как от вершины строим данный угол с транспортира ( или по методике построения угла) 5). Из центра О проводим к этой стороне угла перпендикуляр ОТ по стандартному методу. 6). Через точку пересечения ОТ и окружности проводим параллельно КТ касательную к окружности. Точку ее пересечения с прямой НК обозначим А. Это вершина угла заданной величины. 7). От А откладываем длину данной стороны. Ставим точку В. ВН по свойству касательной из одной точки равен длине отрезка от В до точки касания окружности с третьей стороной. 8). Раствором циркуля, равным ВН, проводим из В, как из центра, полуокружность до пересечения с окружностью в точке Е. 9). Из В через т.Е проводим касательную до пересечения с прямой, проведенной из вершины А, т.е. со второй стороной угла А. Точка пересечения С будет третьей вершиной треугольника. Треугольник АВС построен.
АВС - правильный треугольник со стороной а. АО - радиус описанной окружности. R=АО=а√3/3. ∠АОВ=∠ВОС=АОС=360/3=120°. Так как точка М - середина дуги АВ, то ∠АОМ=∠АОВ/2=60°. Соответственно ∠АОN=60°, а ∠MON=120°. Большая дуга MN равна 360-∠MON=360-120=240°. Вписанный угол MAN опирается на дугу MN и равен её половине. ∠MAN=∩MN/2=240/2=120°. Треугольники AMN и OMN равны, т.к. оба равнобедренные, у них общее основание и углы при вершинах равны, значит углы при основании тоже равны. Соответственно ΔOMN=ΔOBC, значит MN=BC=a. В четырёхугольнике AMON стороны равны, значит он ромб, значит АР=РО. АР=R/2=а√3/6. В правильном треугольнике АЕН АР - высота. Для правильного тр-ка h=a√3/2 (здесь а другая, только для формулы) ⇒ а=2h/√3. ЕН=2·АР/√3=2·а√3/(6√3)=а/3 (здесь а - сторона тр-ка АВС. а=АВ). MN=a, ЕН =а/3. Исходя из симметрии построенного чертежа, ΔAMP=ΔANP, значит МЕ=NН. МЕ=NН=(MN-ЕН)/2=(а-а/3)/2=а/3. МЕ=ЕН=NН=а/3. Доказано.
b=√(26²-24²)=√676-576=√100=10(см);
S=1/2·a·b=1/2·24·10=120(см²)