М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
5rv
5rv
08.12.2021 18:29 •  Геометрия

Вравнобедренном треугольнике сумма всех углов равна 180 (градусов). найдите всего углы этого треугольника , если известно, что один из них равно 68 (градусов). рассмотрите 2 случая.

👇
Ответ:
kjkszpjkangaroo
kjkszpjkangaroo
08.12.2021
Угол 1=68 градусов
а)известно что углы равнобедренного треугольника при основании равны.Пусть угол 1 и угол 2 углы основания, тогда угол 1 равен углу 2
1)68+68= 136
2)180-136=44
б)Если это угол не у основания, тогда
1)180-68=112
2)112:2=56

Не уверена, что правильно, но надеюсь, что так
 
4,7(75 оценок)
Открыть все ответы
Ответ:
MARI5368334
MARI5368334
08.12.2021

драпежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасатыдрапежны, ўсяедны, буйны, нязграбны, галодны, настойлівы, адважны, валасаты

4,6(67 оценок)
Ответ:
gsajhja
gsajhja
08.12.2021

Дано: ABCD — квадрат, Sabcd= 4, т.М — середина АВ, АМ=ВМ, DH⟂СМ.

Найти: DH.

Решение.

1) Найдем сторону квадрата.

АВ²= 4;

АВ= 2 (–2 не подходит).

AB=BC=CD=AD= 2.

т.M — середина АВ, значит, АМ=ВМ= 2:2= 1.

2) Мы видим два равных прямоугольных треугольника: ΔMBC и ΔMAD (равны по двум катетам).

Найдем их площадь. Площадь прямоугольного треугольника равна половине произведения его катетов.

Значит, Smbc= Smad= ½•1•2= 1.

3) А площадь треугольника MDC равна разности площади квадрата и площадей треугольников MBC и MAD.

Т.е. Smdc= Sabcd–Smbc–Smad= 4–1–1= 4–2= 2.

4) Найдем сторону МС прямоугольного треугольника МВС (МС - это гипотенуза) по т.Пифагора:

МС²= МВ²+ВС²;

МС²= 1+2²;

МС²= 5;

МС= √‎5

5) Площадь обычного (произвольного) треугольника равна произведению половины основания этого треугольника на высоту, проведённую к этому основанию.

Для треугольника MDC это выглядит так:

Smdc= ½•MC•DH.

2= ½•√‎5•DH;

2 : ½ = √‎5DH;

√‎5DH= 4;

DH= 4/√‎5.

Расстояние от вершины D квадрата ABCD до прямой СМ равно 4/√‎5.

ОТВЕТ: 4/√‎5.


На стороне АВ квадрата АВСД отмечена середина М. Найдите расстояние от вершины Д до прямой СМ, если
4,8(21 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ