Известно, что квадрат гипотенузы равняется сумме квадратов катетов. AB²+BC²=AC² 5²=AB²+BC² Допустим ВС - х. Из этого следует, что АВ = 2х. Составляем уравнение. 4х²+х²=25 5х²=25 | :5 x² = 5 x = √5 AB = 2x = 2√5
1) угол BAC=42-вписанный и опирается на дугу СВ, следовательно, по свойству вписанного угла, дуга СВ=2*42=84 Угол BOC-центральный и опирается на дугу СВ, следовательно, по свойству центрального угла, угол ВОС=дуге СВ=84
2) угол МОС = 90 Дуга СД- полуокружность =180 Из этих двух следует, что дугаСМ=дуге МД= 90 ( по свойству центрального угла)
Угол МСД вписанный и опирается на дугу МД=90, следовательно, угол МСД=45 (по свойству вписанного угла)
Угол МДС вписанный и опирается на дугу МС=90, следовательно, угол МДС = 45 (по свойству вписанного угла)
1) угол BAC=42-вписанный и опирается на дугу СВ, следовательно, по свойству вписанного угла, дуга СВ=2*42=84 Угол BOC-центральный и опирается на дугу СВ, следовательно, по свойству центрального угла, угол ВОС=дуге СВ=84
2) угол МОС = 90 Дуга СД- полуокружность =180 Из этих двух следует, что дугаСМ=дуге МД= 90 ( по свойству центрального угла)
Угол МСД вписанный и опирается на дугу МД=90, следовательно, угол МСД=45 (по свойству вписанного угла)
Угол МДС вписанный и опирается на дугу МС=90, следовательно, угол МДС = 45 (по свойству вписанного угла)
AB²+BC²=AC²
5²=AB²+BC²
Допустим ВС - х. Из этого следует, что АВ = 2х. Составляем уравнение.
4х²+х²=25
5х²=25 | :5
x² = 5
x = √5
AB = 2x = 2√5