Впрямоугольном треугольнике один из углов равен 60 градусов, а сумма гипотенузы и меньшего из катетов равна 24 см. найдите гипотенузы треугольника. я только помню, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы и все)
Дан ΔАВС. Периметр Р(АВС)=14 см. Продолжим сторону АС треугольника АВС за точки А и С , получим прямую ДЕ. Проведём биссектрису АК угла ВАД, а также биссектрису СМ угла ВСЕ. ВК⊥АК и ВМ⊥СМ Продолжим высоты ВК и ВМ до пересечения с ДЕ. На ДЕ получим точки Д и Е. Так как АК и СМ - биссектрисы и высоты одновременно в ΔАВД и ΔВСЕ, то эти треугольники равнобедренные ⇒ АВ=АД и ВС=СЕ. Высоты АК и СМ в равнобедренных треугольниках АВД и ВСЕ являются ещё и медианами , значит точка К - середина ВД, а точка М - середина ВЕ. Рассм. ΔВЕД: КМ - средняя линия ΔВЕД. ДЕ=ДА+АС+СЕ=АВ+АС+ВС=Р(АВС)=14 см Средняя линия треугольника равна половине стороны, параллельно которой она проходит, то есть КМ=1/2*ДЕ=1/2*14=7 см.
1) Сумма всех четырёх углов, которые образуются при пересечении двух прямых = 360°, причём противолежащие друг другу углы равны. 360° - 325° = 35° - это четвёртый угол. Вертикальный (противоположный) ему угол входит в сумму трёх углов и = 35° 2) (325 - 35) = 290°- сумма двух равных больших углов 3) 290° : 2 = 145° ответ: 145° - величина большего угла.
Х + 2Х=24(так как в треугольнике имеющим угол 30 градусов наименьший катет равен половине гипотенузы)
3Х=24
Х=8
Гипотенуза = 2*8=16