а) Условие перпендикулярности векторов: векторы "а" и "b" являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю, то есть когда Хa*Хb + Ya*Yb = 0, где X и Y - соответствующие координаты векторов. Координаты векторов равны разности соответствующих координат точек его конца и начала. Тогда вектор ЕК{1-(-3);4-(-1)} или ЕК{4;5}. Вектор РМ{2-(-4);1-(-a)} или РМ{6;1+a}. Тогда условие перпендикулярности векторов ЕК и РМ: 6*4+(1+а)*5 = 0. 24+5+5а=0. => а = - 5,8.
б) Угол между векторами определяется по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. ЕР{-4-(-3);5,8-(-1)) или ЕР{-1;6,8} (координату точки Yр= 5,8(-а) нашли в п.а). Координаты вектора ЕК{1-(-3);4-(-1)} или КЕ{4;5}. Тогда косинус угла между этими векторами будет равен:
cosα=(-4+34)/[√(1+46,24)*√(16+25)] = 30/44 ≈ 0,682. Угол между векторами по таблице равен 47°.
ответ: угол между векторами РЕ и КЕ равен ~47°.
Высота прямоугольного треугольника, проведенная к гипотенузе, может быть найдена тем или иным в зависимости от данных в условии задачи.
Длина высоты прямоугольного треугольника, проведенной к гипотенузе, может быть найдена по формуле
или, в другой записи,
где BK и KC — проекции катетов на гипотенузу (отрезки, на которые высота делит гипотенузу).
Высоту, проведенную к гипотенузе, можно найти через площадь прямоугольного треугольника. Если применить формулу для нахождения площади треугольника
(половина произведения стороны на высоту, проведенную к этой стороне) к гипотенузе и высоте, проведенной к гипотенузе, получим:
Отсюда можем найти высоту как отношение удвоенной площади треугольника к длине гипотенузы:
Так как площадь прямоугольного треугольника равна половине произведения катетов:
То есть длина высоты, проведенной к гипотенузе, равна отношению произведения катетов к гипотенузе. Если обозначить длины катетов через a и b, длину гипотенузы — через с, формулу можно переписать в виде
Так как радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы, длину высоты можно выразить через катеты и радиус описанной окружности:
Найти:
b - ?
Решение:
Т.к. ABC - прямоугольный треугольник, и c - гипотенуза, a - катет, то по теореме Пифагора:
Отсюда:
ответ: