Удивительно, но эта такая сложная по формулировке задача решается в одно действие. Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С; Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C; а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых). а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :) Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны. Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: ... теперь находим АД, используя подобие треугольников.... .... значит, АД=
4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2
1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga
2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...
BD^2=AB^2 - AD^2 = 400 - 256 = 144
BD^2 = 144 = 12^2
BD = 12
Найдем DC:
DC^2 = BС^2 - BD^2 = 169 - 144 = 25
DC^2 = 5^2
DC = 5