Конус катится по плоскости вокруг неподвижной вершины.найдите площадь поверхности ,описываемой высотой конуса,если его образующая равна l, а высота h. как можно поподробнее))
Высота заданного конуса при его качении будет описывать коническую поверхность. Диаметральные положения катящегося конуса изображены на рисунке во вложении. Смотрите там же решение.
Параллельно прямой АК проведём прямую СМ к стороне АД. СМ пересекает ВД в точке Е. Треугольники АВК и CДМ равны т.к. АВ=СД, ВК=ДМ и ∠В=∠Д. В них ∠АВР=∠СДЕ, значит ВР=ДЕ. Пусть одна часть в заданном отношении равна х, тогда ВР=ДЕ=2х, РД=3х, РЕ=РД-ДЕ=3х-2х=х. В тр-ке ВСЕ РК║СЕ, ВР:РЕ=2:1, значит ВК:СК=2:1 - это ответ 1.
Параллельно сторонам АД и ВС через точку Р проведём отрезок НО. Параллельно сторонам АВ и СД к прямой НО проведём отрезок КТ. НВКТ - параллелограмм. Его площадь равна двум площадям треугольника BPК т.к. у них одинаковая высота к стороне ВК. S(НBКТ)=2S(BРК)=2. Площадь параллелограмма ТКСО равна половине НВКТ т.к. КС=ВК/2. S(TKСО)=2/2=1. АНОД - параллелограмм. Соответственно его площадь равна удвоенной площади тр-ка АРД. Тр-ки BPК и АРД подобны по трём углам, значит их коэффициент подобия k=ВР:РД=2:3, а коэффициент подобия площадей k²=4/9. S(АРД)=S(BРК)/k²=9/4. S(АНОД)=2·9/4=4.5, Площадь исходного параллелограмма АВСД равна сумме площадей найденных параллелограммов НВКТ, ТКСО и АНОД. S(АВСД)=2+1+4.5=7.5 - это ответ 2.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
Высота заданного конуса при его качении будет описывать коническую поверхность. Диаметральные положения катящегося конуса изображены на рисунке во вложении. Смотрите там же решение.