В равнобедренной трапеции: (d₁+d₂)/2=С, Где d₁ длина верхней линии, d₂ длина нижней, С длина средней линии. Отсюда: (17+d₂)/2=30, откуда d₂ = 43 Назовем вершины трапеции буквами: A, B, C, D. AB у нас будет боковой стороной, остальное и по логике легко распределить. Так вот AD = 43. Нам нужно найти угол A. cosA=(AD-BC)/(2AB)=26/40=13/20 cosB=cos(π-A)=-cosA=-13/20 ∠С=∠B, ∠A=∠D. Косинусы углов определены. Если интересует числовое значение в градусах, это можно высчитать самостоятельно по таблице, или в калькуляторе. В школьных, иль контрольных заданиях достаточно определить синус, косинус или тангенс (в крайнем случае котангенс) угла.
Углы при основании равнобедренного треугольника равны: ∠А = ∠С = 35° ∠НВС = ∠А + ∠С = 70°, так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
2) уравнения сторон AB и BC. АВ : Х-Ха У-Уа = Хв-Ха Ув-Уа.
х + 1 у - 4 = это каноническое уравнение прямой АВ. 0 -2 -2х - 2 = 0, х = -1 это вертикальная прямая.
ВС : Х-Хв У-Ув = Хс-Хв Ус-Ув
х + 1 у - 2 = это каноническое уравнение прямой ВС. -6 1 х + 1 = -6у + 12 х + 6у - 11 = 0 это уравнение общего вида. у = (-1/6)х + (11/6) это уравнение с коэффициентом.
(17+d₂)/2=30, откуда d₂ = 43
Назовем вершины трапеции буквами: A, B, C, D.
AB у нас будет боковой стороной, остальное и по логике легко распределить.
Так вот AD = 43. Нам нужно найти угол A.
cosA=(AD-BC)/(2AB)=26/40=13/20
cosB=cos(π-A)=-cosA=-13/20
∠С=∠B, ∠A=∠D. Косинусы углов определены.
Если интересует числовое значение в градусах, это можно высчитать самостоятельно по таблице, или в калькуляторе.
В школьных, иль контрольных заданиях достаточно определить синус, косинус или тангенс (в крайнем случае котангенс) угла.