Сумма противолежащих углов вписанного четырехугольника равна 180°. Четырехугольник АВСD - вписанный, ⇒ ∠ВАD+∠BСD=180°. Угол ВАL - развернутый. Сумма смежных углов равна 180°. ⇒ ∠BАD +∠LAD =180°. На приложенном рисунке ∠ LAD обозначен как 1, а ∠KCD – 2. Следовательно, угол С =∠1.
Рассмотрим треугольники АLD и СКD. Вертикальные углы при D равны – Вычтя их из суммы углов треугольника, получим <1+<L=<2+<K. По условию <K-< L=60°. ⇒ ∠К=60°+<L Заменим в предыдущем уравнении угол К найденным значением: ∠1+∠L=<2+60°+∠L, откуда ∠1=∠2+60°. Равный углу 1 ∠С=∠2+60° , ⇒ ∠2=∠С-60°, поэтому ∠С-60°+∠С=180°, ⇒ 2С=240°, ∠С=120° и, следовательно, угол ВАD=60°
с прямым углом
, EF — биссектриса
,
, FG — искомый отрезок.
.
— биссектриса, то
(биссектриса
делит
на два равные угла).
(это следует из условия: так как
прямоугольный, то и
; так как
— расстояние от
до
, то
).
и
, то и третий угол первого треугольника равен третьему углу второго треугольника:
. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:

.
является для обоих треугольников общей.
(второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (
— сторона, а
— два прилежащих угла)).
соответствует
, тогда:
. Смотрите второй рисунок.
s=17*8/2=68 см²