Обозначим основания трапеции а и в. Из заданного соотношения а/в = 9/16 определяем в = а*16/9. Подставляем в формулу определения радиуса вписанной окружности: r = √(a*b) / 2 2*6 = √(a*(а*16/9)) = a*4 / 3 Отсюда а =12 / (4/3) = 9 см. в = 9*16 / 9 = 16 см. В трапеции, описанной около окружности, сумма оснований равна сумме боковых сторон. Тогда боковая сторона равна (9+16) / 2 = 25/2 = 12,5 см.
Экономика является изучение того, как человеческие существа выделяют ограниченные ресурсы для производства различных товаров и как эти товары распределяются для потребления среди людей в обществе. если люди могут свободно вести свою экономическую жизнь, как им угодно, до тех пор, пока они не вредить другим и соблюдать законы, установленные их правительствами, то они живут в свободном обществе со свободным рынком. идеальная рыночная экономика строится на правовой фундамент, в котором права человека, включая права собственности, являются protected.its с основными принципами являются: 1) суверенитет личности, каждый человек владеет его жизнь труда, и 2) взимания арендной платы за использование природных ресурсов, так как земля не может быть истребована от самопринадлежности.
1. В равнобедренной трапеции сумма оснований равна сумме боковых сторон и боковая сторона видна из центра вписанной окружности под углом 90° (свойства). Тогда По теореме Пифагора в треугольнике АВО: ОВ=9, АО=12, АВ=15. Высота из прямого угла на гипотенузу АВ - это радиус вписанной окружности и по свойству высоты: r= ОА*ОВ/АВ = 12*9/15 = 7,2см. Высота трапеции равна двум радиусам вписанной окружности h = 2r = 14.4 см. Тогда площадь трапеции: S=(ВС+АD) * h/2 = (АВ+СD) *h/2 = (15+15) *14,4/2 = 216см². ответ: 216. 2. Пусть АВСD - данная прямоугольная трапеция c прямым углом А. Опустим высоту СН из тупого угла С. Тогда сторона CD по Пифагору равна √(6²+8²) = 10см. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°. Значит треугольник OCD - прямоугольный. Тогда по Пифагору CD=√(6²+8²)=10см. Радиус вписанной окружности - высота ОР из прямого угла и по ее свойствам равен r= ОС*ОD/CD=6*8/10=4,8см. Тогда высота трапеции равна 2*r=9,6см. В треугольнике НСD катет НD=√(10²-9,6²)=2,8см. Высота ОР делит гипотенузу СD на отрезки СР и РD, причем ОС²=СР*CD (свойство). Отсюда СР=36/10=3,6см, а PD=6,4см. В нашей трапеции основание ВС=СN+r = 4,8+3,6=8,4см (так как касательные из одной точки С к окружности равны). Площадь трапеции равна сумме площадей прямоугольника АВСН и треугольника CHD: 8,4*9,6+(1/2)*9,6*2,8 = 80,64+13,44=94,08см². ответ: S=94,08см². 3. Формула радиуса вписанной в прямоугольный треугольник окружности: r=(a+b-c)/2 = 2. => a+b=14. b=a-14. По Пифагору: a²+(14-а)²=100 => a²-14a+96=0. => a1=6, a2=8. Соответственно b1=8, b2=6. S=(1/2)*6*8=24см². 4. По теореме косинусов для треугольников АОС и ВОС: R²=16²+8²-2*16*8*Cosα (1) R²=12²+8²-2*12*8*Cos(180-α). Cos(180-α) = -Cosα. R²=12²+8²+2*12*8*Cosα. (2). Приравняем (1) и (2): 320-256*Cosα=208+192*Cosα => Cosα=0,25. Из(1): R²=320-64=256. ответ: R=16см. 5. Касательные из одной точки к окружности равны, радиусы перпендикулярны касательным в точке касания. Поэтому прямоугольные треугольники АВО и СВО равны и угол АВО=30°. Тогда АО=20см и АВ=10√3см. Периметр Pabco=2*10+2*10√3=20(1+√3)см.
Из заданного соотношения а/в = 9/16 определяем в = а*16/9.
Подставляем в формулу определения радиуса вписанной окружности:
r = √(a*b) / 2
2*6 = √(a*(а*16/9)) = a*4 / 3
Отсюда а =12 / (4/3) = 9 см. в = 9*16 / 9 = 16 см.
В трапеции, описанной около окружности, сумма оснований равна сумме боковых сторон.
Тогда боковая сторона равна (9+16) / 2 = 25/2 = 12,5 см.