а пересечении серединных перпендикуляров, т к любая точка серединного перпендикуляра равноудалена от концов отрезка из середины которого и был проведен этот перпендикуляр ( это правило справедливо для любого треугольника ) а на пересечении биссектрис треугольника лежит центр вписанной в этот треугольник окружности (справедливо для любого тр-ка)
1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
1. Проводим вторую высоту из тупого угла. Эти две высоты делят нижнее основание на отрезки 5, 20, 5 (т.к. трапеция равнобедренная, у нас отсекаются высотами равные треугольники (прямой угол, углы у основания равнобедренной трапеции равны) по бокам от прямоугольника со стороной 20.) => Основания равны 20 и 25+5=30. ответ: 20 и 30 2. Очевидно, что данный угол - тот, который у нижнего основания (т.к. у верхнего основания углы >90°). Проводим две высоты. Здесь так же, как и в предыдущей задаче, образуются два равных прямоугольных треугольника с катетами 3 (т.к. отсекается прямоугольник со стороной 6, как верхнее основание) и с углами 60° и 90-60= 30°. Катет лежащий напротив угла в 30 градусов равен половине гипотенузы => высота=3*2=6 ответ:6