you suck my dick
Пусть у нас правильная пирамида МАВСД,где вершина пирамиды точка М.МО перпендикулярна плоскости основания и точка О-точка пересечения диагоналей основания.В основании лежит квадрат,так как пирамида правильная.Проведем ОМ перпендикулярно СД .Соединим Точку М и Н.Тогда по теореме о трёх перпедикулярах СД перпендикулярна МН и угол МНО-линейный угол двугранного угла при ребре СД.Угол МНО равен 30 градусов.Рассмотрим треугольник МОН-он прямоугольный ивысота лежит против угла 30.градусов,поэтому МН-гипотенуза будет в два раза больше катета МО и равна 8.По теореме Пифагора ОН равняется корень квадратный из 64минус 16 и равняется корень из 48=4 корня квадратных из 3.ОН=0,5АД.следовательно АД=8корней квадратных из3-сторона основания.Площадь боковой поверхности равна четыре площади треугольникаМДС и равна 0,5хМНхСДх4=0,5х8х8корень из3х4=128 корень квадратный из 3.
Боковые стороны, значит, равны по 4 см, т.к. равны у равнобедренного треугольника, и синус 120 градусов равен синусу 60 градусов, равен √3/2, тогда площадь равна половине произведения боковых сторон на синус угла между ними.
(4*4*√3/2)/2=4√3/см²/, найдем теперь по теореме косинусов основание равнобедренного треугольника, учитывая , что косинус 120 град. равен -1/2, основание равно
√((4²+4²-2*4*4*(-1/2))=4√3, значит, радиус описанной окружности равен а*в*с/4S=(4*4*4√3)/(4*4√3)=4/см По теореме синусов а/sinα=2*R
R=a/2sinα, найдем угол α при основании и подставим в эту формулу.
Углы при основании равны, поэтому α=(180°-120°)/2=30°
Итак, радиус равен 4/(2sin30°)=4/(2*1/2)=4/cм/
ΔАОВ: < AOB=60°, AO=6см, BO=5см.
по теореме косинусов: AB²=AO²+BO²-2AO*BO*cos<AOB
AB²=6²+5²-2*6*5*cos60°
AB²=31, AB=√31см.
ΔAOD: <AOD=180°-60°, <AOD=120°, AO=6см, OD=5см
AD²=AO²+OD²-2*AO*AD*cos<AOD
AD²=6²+5²-2*6*5*cos120°,
AD²=91, AD=√91см