Любая сторона треугольника должна быть меньше суммы двух других сторон треугольника.
Бывают задачи по типу "Можно ли составить треугольник из отрезков длиной 5, 6, 7". Есть смысл проверять только самую длинную сторону - 7 меньше, чем 5 + 6, значит, из заданных отрезков можно составить треугольник.
Возьмём другой пример - отрезки длиной 4, 3, 10. Здесь 10 больше, чем 4 + 3, соответсвенно, невозможно составить треугольник из таких отрезков.
И рассмотрим такие отрезки: 3, 5 и 8. Здесь 8 = 3 + 5, а это значит, что если на одну прямую положить два меньших отрезка, что бы у них была одна общая точка, то мы получим длину третьего отрезка. Но такая конструкция также не может считатся треугольником, так как треугольник образован тремя точками, которые не лежат на одной прямой.
При перетині прямих утворюються 4 кути, серед яких кожна пара сусідніх кутів - суміжні (їх сума рівна 180 градусів), а кожна пара протилежних кутів - вертикальні (рівні).
Пару суміжних кутів немає сенсу розглядати (бо вони в сумі дають 180 градусів), тож нам треба взяти пару однакових (вертикальних) кутів.
Нехай градусна міра одного такого кута дорівнює х градусів.
Тоді: х + х = 308
2х = 308
х = 154 градуси
Прийнято вважати, що кут між прямими не може перевищувати 90 градусів. Для цього зазвичай з двох суміжних кутів беруть той, який не є більшим.
Знайдемо для нашого кута суміжний до нього.
180 - 154 = 26 градусів