Для этого надо найти длины сторон по координатам вершин: A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004. ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6. АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004. Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна: ha = 2√(p(p-a)(p-b)(p-c)) / a. a b c p 2p S 8.5440037 6 8.5440037 11.544004 23.08800749 24 ha hb hc 5.61798 8 5.61798
Площадь основания по формуле Герона: S=√(p(p-a)(p-b)(p-c)). p=(a+b+c)/2=(2+3+3)/2=4. S=√(4(4-2)(4-3)(4-3))=√8=2√2.
Из одной из вершин верхнего основания призмы опустим высоту на нижнее основание. В прямоугольном треугольнике, образованном этой высотой, прилежащим боковым ребром и проекцией ребра на нижнее основание, острый угол по условию равен 45°, значит треугольник равнобедренный с гипотенузой 4 и высота призмы (катет треугольника) h=4/√2=2√2.
Объём призмы: Vп=Sh=2√2·2√2=8. Объём куба: Vк=а³ ⇒ а=∛Vк. По условию объёмы призмы и куба равны, значит ребро куба: а=∛8=2 - это ответ.