Так как угол 45, то ребро и диагональ основания равны, то теореме пифагора находи что они равны 4, тогда площадь диагонального сечения равна 4*4=16, Объем = площадь основания на высоту. по теореме пифагора находим сторону основания 2 корня из2, тогда площадь равна 8, соответственно объем=8*4=16. площадь полная = 8*2+8корней из 2 *4==16+32 корня из 2
Треугольники МОЕ и РОК равны по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. МО = ОР, ЕО = ОК – по условию; угол МОЕ = углу РОК – как вертикальные (вертикальные углы равны). Из равенства треугольников МОЕ и РОК следует, что углы Е и К равны. Углы Е и К – внутренние накрест лежащие при прямых МЕ, РК и секущей ЕК. По признаку параллельности прямых
Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.