Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)
ответ:
1. аа₁ - биссектриса,
вв₁ - медиана,
сс₁ - высота.
2. ав = св,
∠аве = ∠све,
ве - общая сторона.
δаве = δсве по 1 признаку (по двум сторонам и углу между ними).
3. ∠вас = 180° - ∠1 по свойству смежных углов.
∠вас = 180° - 110° = 70°.
в равнобедренном треугольнике углы при основании равны, значит
∠вса = вас = 70°
∠bdc = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ом = ок по условию,
∠dmo = ∠bko по условию,
∠dom = ∠bok как вертикальные, значит
δdmo = δbko по стороне и двум прилежащим к ней углам.
в равных треугольниках напротив равных сторон лежат равные углы, значит ∠mdo = ∠kbo, а так же od = ob.
треугольник dob равнобедренный, значит углы при основании равны:
∠odb = ∠obd.
∠mdb = ∠mdo + ∠odb
∠kbd = ∠kbo + ∠obd, а так как ∠mdo = ∠kbo и ∠odb = ∠obd, то
∠mdb = ∠kbd, т.е. ∠d = ∠b
объяснение:
это ответы на этот сор