Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
При пересечении двух параллельных прямых секущей сумма внутренних односторонних углов равна 180°.Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.
В ромбе диагонали точкой пересечения делятся пополам (АО=ОС и ВО=OD).
Пусть ВО=х, тогда:
AC-BD=14
AC-2x=14
AC=14+2x
2·OC=2(x+7)
OC=x+7
Из ΔBCO по т. Пифагора:
x=-15 не подходит по смыслу задачи, поэтому один корень х=8.
ВО=х=8 см
ОС=х+7=8+7=15 см
АС=АО+ОС=15+15=30 см
BD=BO+OD=8+8=16 см
Вспомним такую формулу: , где d₁, d₂ - диагонали параллелограмма(у нас ромб, а ромб-это тоже параллелограмм), a, b - стороны параллелограмма(у нас ромб, поэтому a=b).
Найдем диагонали, составив систему:
Пусть АС=х, BD=y.
Отрицательные значения нам не подходят, так как длинна - величина неотрицательная.
Тогда AC=x=30см, BD=y=16см.
ответ:
поэтому АО=5, ВО=3, АВ=5
Р=13