Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
Пирамида ABCDE, ABCD - основание, AED - грань, перпендикулярная плоскости основания. Проведем высоту EK к ребру AD. Она у нас по условию равна 6. Ещё проведем высоту EM к грани BC. Поскольку плоскость AED перпендикулярна плоскости основания, а все остальные грани наклонены к ней под одинаковым углом, то углы EDA=EAD=EMK = 60 градусов, и прямоугольные треугольники AEK, DEK и MEK равны. Из этих треугольников найдем сразу всё, чего нам не хватает: KM = KD = KA = EK/tg(60гр) = 6/√3. Площадь ABCD = KM*(AK+KD) = 2*(6/√3)^2 = 24. Объем пирамиды равен 1/3*24*6 = 48