Проведем прямую "а". Отложим на этой прямой произвольный отрезок АВ и проведем к нему серединный перпендикуляр "b". Для этого проведем две окружности с центрами в точках А и В одинаковыми радиусами R=AB. Проведем прямую "b" через точки пересечения этих окружностей. Это и есть серединный перпендикуляр к отрезку АВ. Отметим одну из точек пересечения окружностей как точка "С". Соединим точку А с точкой С. Тогда АС=(1/2)*АС по построению и угол АСН=30°, так как лежит против катета АН, равного половине гипотенузы (АС=АВ). Следовательно, угол АСD=180°-30°=150°. Требуемый угол построен.
Диагональ делит трапецию на два треугольника со средними линиями. В треугольнике средняя линия равна половине параллельной стороны. Задача 10. Больший из отрезков - половина от 10, т.е. 5. Задача 11.Меньший из отрезков - половина от 12, т.е. 6. Задача 12. Средняя линия в трапеции - половина суммы параллельных сторон. Периметр 40, сумма боковых 20, значит сумма параллельных - тоже 20. Средняя линия 10. В 13. проведи высоту через точку пересечения диагоналей и рассмотри получившиеся 4 равнобедренных прямоугольных треугольника. Получится сумма оснований в 2 раза больше высоты, т.е. 20. А средняя линия 10. В 14 проведи две высоты рассмотри два треугольника и прямоугольник. Верхнее основание получится 7, а нижнее 37. Сумма 44, средняя линия 22. В 15 такое же рассуждение. Верхнее основание получается 111, нижнее 143. (111+143)/2 =127 - средняя линия. Вроде все должно быть верно. Самое главное - путь к ответу.