Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Объем шара находится по стандартной формуле
V=frac{4}{3}pi*R^3
V=frac{4}{3}pi*6^3
V=4pi*6^2*2
V=8pi*36
V=288pi
Проведём к плоскости АВС перпендикуляр ЕМ. Соединим точки Е и С, СЕ перпендикулярно АВ поскольку в равнобедренном треугольнике медиана и высота совпадают(в условии точка Е -точка медианы).Соединим точку М с вершинами А и С. Проведём перпендикуляр из Е к АС в точку N. Угол САВ=45 по условию, тогда угол NЕА=45, поскольку в треугольнике АNЕ угол ANE прямой. Значит треугольник АNЕ равнобедренный АN=NЕ=8. NЕ является медианой и высотой треугольника АЕС. Тогда расстояние от М до АС МN=корень из (МЕ квадрат+ NЕ квадрат)=корень из (16*5+64)=12. Площадь АСМ=1/2 АС*МN=1/2*16*12=96. Площадь его проекции равна S=1/2АС*NЕ=1/216*8=64. МЕ перпендикулярно плоскости итреугольника АВС и расстояние между ЕМ и ВС равно перпендикуляру из точки Е на ВС в точку К. ТО есть ЕК=ЕН=8.
ответ: Периметр треугольника cad =12 см
2)Треугольник ABC, KM - средняя линия угол А=углу С, треугольники AKD и DMC равны, AK=MC, АД=DC, значит KD+MD, т.к треугольник KMD равнобедренный, медиана BD делит среднюю линию на две равные части KO=MO (точка О пресечение BD и КМ), в равнобедренном треугольнике KDM ДО= биссектрисе, медиане, высоте и углу MDB и KDB=43