Дано:
треугольник АВС,
угол В = угол А + 40,
угол С = 5 * угол А,
Найти градусные меры угла А, угла В, угла С - ?
Рассмотрим треугольник АВС. Нам известно, что сумма градусных мер любого треугольника равна 180 градусов. Пусть угол А = х градусов, угол В = х + 40 градусов, а угол С = 5 * х градусов. Составляем уравнение:
х + х + 40 + 5 * х = 180;
х + х + 5 * х = 180 - 40;
х + х + 5 * х = 140;
х * (1 + 1 + 5) = 140:
х * 7 = 140;
х = 140 : 7;
х = 20 градусов - угол А;
угол В = 20 + 40 = 60 (градусов);
угол С = 5 * 20 = 100 (градусов).
ответ: 20 градусов; 60 градусов; 100 градусов.
Условие не совсем корректное. В равностороннем треугольнике нет большей или меньшей стороны, на то он и равносторонний.
В сети можно найти несколько вариантов похожих задач с разными данными.
Вариант 1.
Решаем задачу о равнобедренном треугольнике АВС (АВ=ВС) с боковой стороной, равной 4, и большей стороной АС.
АС=0,75•(4+4)=6 см
Биссектриса угла против основания равнобедренного треугольника совпадает с высотой и медианой, поэтому АМ=СМ и ∆ АВМ=∆ СВМ – прямоугольные.
Искомое расстояние - высота МН треугольника АВМ.
cos BAM=AM:AB=3/4
MH=AM•sin HAM
sin(HAM)=√(1-cos*)=√(1- 9/16)=√7/4
MH=3√7/4
——
Возможно, задача все же о разностороннем треугольнике.
Вариант 2.
В разностороннем треугольнике большая сторона составляет 75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.
Здесь условие корректное - есть и большая сторона, и меньшая.
АС=0,75•(AB+BC)
По свойству биссектрисы треугольника ВМ делит противоположную углу сторону АС в отношении прилежащих сторон.
АВ:ВС=АМ:СМ
АМ=0,75 АВ
Меньшая высота - высота, проведена к большей стороне. ВК=4
Из формулы площади треугольника
ВК•AM=MH•AB
НМ=ВК•AM:AB ⇒ НМ=ВК•0,75 АВ:AB
HM=4•0,75=3 см