68 в цилиндре, длина высоты которого равна 5 см, а площадь боковой поверхности 40 (пи) см2, проведены два взаимно перпендикулярных диаметра основания ок и ад. вычислите длину отрезка, соединяющего центр другого основания с серединой отрезка kd
Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
Площадь боковой поверхности цилиндра:
Sбок = 2πR · h,
где R - радиус основания цилиндра, h - его высота.
40π = 2πR · 5
R = 4 см.
Пусть С - центр нижнего основания, В - центр верхнего.
СК = СD = R = 4 см
ΔCKD - прямоугольный, равнобедренный, значит
KD = CK√2 = 4√2 см.
Пусть Н - середина отрезка KD, тогда СН - медиана и высота ΔCKD, а медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине:
СН = KD/2 = 2√2 см
Из прямоугольного треугольника ВСН по теореме Пифагора:
ВН = √(ВС² + СН²) = √(25 + 8) = √33 см