Поскольку стороны прямоугольника попарно равны, то проще вычислять через полупериметр: р=Р/2; 1. а) р=48/2=24 см, вторая сторона 24-10=14 см, площадь - 10*14=140 см²; б) р=36/2=18 см, вторая сторона - 18-10=8 см, площадь - 10*8=80 см².
2. а) р=20/2=10 см, 10-2=8 см - сумма сторон при их равенстве между собой, 8/2=4 см - одна сторона, 4+2=6 см - другая сторона, 6*4=24 см² - площадь; б) р=10 см, 10-4=6 см - сумма сторон при их равенстве, 6/2=3 см - одна сторона, 3+7=7 см - другая сторона, 3*7=21 см² - площадь.
1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
Решение задания приложено