М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mratom1111
Mratom1111
26.03.2020 10:54 •  Геометрия

Образующая конуса равна √6 см и составляет с площадью основания угол 45°. найдите объем конуса.

👇
Ответ:
Алла1666666
Алла1666666
26.03.2020
Найдем радиус основания и высоту конуса -это катеты в прямоугольном треугольнике с гипотенузой √6 с углом к ней
R=√6 * cos 45  =√6 * √2  /2=√12/2 = √(12/4)=√3
h=√6 sin 45 = √3
V=πR²h/3
V=π* (√3²)* √3 /3=π√3
4,4(59 оценок)
Открыть все ответы
Ответ:

відповідь:

пояснення:

проекция вершины s на основание , есть точка пересечения диагоналей квадрата abcd .

положим что это точка h .

l,k середины as, cs соответсвенно , также положим что b1k пересекает bc в точке x , можно теореме менелая , тогда

bb1/b1s * sk/kc * cx/bx=1

или (20-5)/5*(1/1)* (cx/(24+cx))=1 , откуда cx=12 , значит bx=36. аналогично если y точка пересечения lb1 с ab , тогда by=36 .

опустим высоту из точки b1 на основание , основание высоты n будет лежат на диагонали . найдём b1n , подобия треугольников shb и b1nb , тогда sh/b1n = 4/3

по теореме пифагора sh=sqrt(bs^2 - bh^2) = sqrt(bs^2-(bd/2)^2) = sqrt(20^2-(12 sqrt()= sqrt(112) , значит b1n = 3*sqrt(7) и bn=sqrt(15^2-9*7)=9*sqrt(2) . xby равнобедренный и прямоугольный треугольник , положим что m точка пересечения bn и xy , тогда bm=36*sqrt(2) , и mn=bm-bn= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .

тогда если "a" это угол между плослкостью основания и данной плосокостью то

tga=b1n/mn = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда

a=arctg(sqrt(14)/18) .

4,8(84 оценок)
Ответ:
f79gkr4st
f79gkr4st
26.03.2020
В чем же особенность этих задач? Задачи на построение не просты.  Не существует единого алгоритма для решения всех таких задач.  Каждая из них по-своему уникальна, и каждая требует индивидуального подхо
да для решения.  Именно поэтому научиться решать задачи на построение чрезвычайно трудно, а, порой, практически невозможно.Но эти задачи дают уникальный материал для индивидуального творческого поиска путей решения с своей интуиции и подсознания.
Любая ли задача решается с циркуля и линейки? Еще в древности греческие математики встретились с тремя задачами на построение, которые не поддавались решению.
4,5(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ