проведём произвольную прямую и отметим на ней точку. построим прямую, перпендикулярную к нашей прямой и проходящую через отмеченную точку. Для этого строим окружность произвольного радиуса с центром в отмеченной точке. Эта окружность пересекает прямую в двух точках. Замеряем циркулем расстояние между этими точками и проводит окружности этого радиуса из точек пересечения и окружности. Эти окружности пересекаются в двух точках, проведём прямую через эти точки и получим две перпендикулярные прямые. на любой из них откладываем от точки пересечения длину катета и строим окружность из конца этого катета радиусом равным длине гипотенузы. Отметим точку пересечения этой окружности и перпендикулярной прямой, соединим её и конец катета, получим прямоугольный треугольник
sin(угла)=катет\гипот=12\15=3\5
cos (угла)=√(1-sin²(угла))=√(1-16\25)=√9\25=3\5
по формуле найдем диагональ
a=√(b²+c²-2bc*cos(угла))=√(15²+25²-2*15*25*3\5)=√400=20
по свойсчтву диагоналей параллелограмма (сумма квадратов диагоналей равна сумме квадратов сторон) найдем вторую диагональ
400+диаг²=25²+15²
диаг²=625+225-400=450
диаг=√450=15√2
ответ 20 и 15√2