1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Углы треугольника составляют 40, 60 и 80 градусов (т.к. 2х+3х+4х=180 => 9x=180 => x=20).
Пусть вершины треугольника обозначены АВС, центр окружности - О. Отрезок ОА является биссектрисой угла ВАС, ОВ делит пополам АВС, и ОС - соответственно ВСА. Поэтому угол ОАВ=20=ОАС, ОВС=ОВА=30, ОСА=ОСВ=40.
Угол АОВ (под ним видна сторона АВ) равен 130. (АОВ=180-ОАВ-ОВА=180-20-30)
Угол АОС (под ним видно сторона АС) равен 120. (АОС=180-ОАС-ОСА=180-20-40)
Угол ВОС (под ним видна сторона ВС) равен 110. (АОВ=180-ОВС-ОСВ=180-30-40)
т.е получаем два одинаковых треугольника со сторонами: 8см и 12÷2=6см.
углы при основании в равнобедренном треугольнике равны, значит, синусы, косинусы и тангенсы этих треугольников будут соответственно равны.
прежде чем находить синусы и т.д, нужно найти гипотенузу.
по т.Пифагора гипотенуза=кореньиз(64+36)=10см.
синус=противопол.катет/гипотенуза.=8/10=0.8.
косинус=прилеж.катет/гипотенуза=6/10=0.6
тангенс=противол.катет/прилеж.катет=8/6=4/3