Объём шарового сектора определяется по формуле: V = (2/3)πR²H, где R - радиус шара, H - высота сектора. H = R-Rcos α, где α - угол половины дуги сектора. V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α). В нашем случае α = 60/2 = 30°. Тогда V = (2/3)πR³*(1-(√3/2)).
Не могут пусть прямоугольный треугольник АВС (С-прямой) биссектрисы пересекаются в точкеО 1.рассмотрим треугольник АОВ, образованный биссектрисами острых углов сумма острых углов 90гр (в треугольнике АВС), значит сумма углов ОАВ и ОВА -45гр, значит угол между биссектрисами угол АОВ=135гр 2. рассмотрим треугольник обрзованный биссектрисами прямого и одного из острых углов . Прямой угол делим пополам 90:2=45ГР, острый будет еще меньше, значит третий угол будет больше 90гр. ответ не могут, биссектрисы пересекаются по тупым углом
V = (2/3)πR²H, где R - радиус шара, H - высота сектора.
H = R-Rcos α, где α - угол половины дуги сектора.
V = (2/3)πR²H*(R-Rcos α) = (2/3)πR³*(1-cos α).
В нашем случае α = 60/2 = 30°.
Тогда V = (2/3)πR³*(1-(√3/2)).