Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)По свойству медиан треугольника имеем: OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5 где OB=10 по условию Тогда BB'=OB+OB'=10+5=15Из прямоугольного треугольника B'CB по теореме Пифагора найдем B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12 где BC=9 по условию Подставим в (1) вместо B'C его значение, найдем CA: CA=2*12=24И, наконец, найдем искомую площадь S треугольника ABC: S=CA*BC/2=24*9/2=12*9=108
Сделаем доп построения: проедем высоту ВЕ из вершины В. В нашей трапеции образовалось два треугольника: АВЕ и CDH (CH - высота из условия задачи, сами мы ввели только вершину Н для удобства); рассмотрим эти два треугольника: угол А=углу D, угол Е= углу Н=90 (т.к. ВЕ и СН - высоты) => угол АВЕ=углу DCH (сумма углов в треугольнике равна 180 градусов) => по двум углам и стороне между ними рассматриваемые треугольники равны => AE=DH=8; Чтобы найти EH, нужно из АН вычесть DH, т.е. ЕН=15-8=7. РАссмотрим чет-ник ВСНЕ: в нем ВСII ЕН (т.к. они части осноания трапеции),ВС=ЕН; все углы в нем по 90 градусов => т.о. ВС=ЕН=7 см
и тогда тупой угол параллелограмма = (180 - (α + β))
используем определение синуса и теорему синусов)))