Решу пока что первую задачу. Нам дан треугольник АБС, известен угол, чтобы найти сторону, нам нужно найти углы. Синус альфа равен 15/17, это приблизительно 0,8823, в таблице Брадиса это значение угла равно 61 градус, значит синус альфа равен 61 градус. Теперь найдем угол Б, 180-(61+90)=29 градусов. Угол Бетта равен 29 градусов. Он острый.
Теперь нам известны все углы. Сторону ВС мы найдем по теореме синуса.
а/синусА=б/синусБ;
Итого, по пропорции, найдем сторону ВС(или маленькой буквой "а");
а=8*синус61градус/синус90градус.
8*0,8823/1,000=7,1
ответ:Сторона ВС равна приблизительно 7,1.
Уравнение прямой, проходящей через две точки, выглядит так:
(х-а) / (в-а)= (у-с) / (у-d), где А(а;с) В(в;d)
Подставляем координаты данных нам точек А(1;3) и В(-2;-3):
(х-1)/(-2-1)=(у-3)/(-3-3)
(х-1) / -3 = (у-3) / -6 используя осн свойство пропорции получаем:
-6(х-1)=-3(у-3)
-6х+6=-3у+9 делим все слагаемые уравнения на -3 и переносим часть из них:
у=2х-2+3
у=2х+1.
Проверяем по данным точкам:
А: 3=2*1+1, 3=3 верно
В: -3=-2*2+1=-3, -3=-3 верно
Значит наша прямая действительно проходит через данные в условии точки. Всё!