ответ: 6 (ед. длины)
Объяснение:
Проведем DE║AM. В треугольнике АМС отрезки АD=DC ( т.к. ВD медиана ∆ АВС и делит АС пополам). DE параллельна АМ и является средней линией ∆ АМС.⇒ СЕ=ЕМ.
В ∆ ВDE отрезок ОМ - средняя линия ( ВО=ОD, и ОМ║DE). ⇒ ВМ=МЕ=ЕС.
Аналогично, проведя из D параллельно СК прямую DH доказывается равенство ВК=КН=НА. ⇒ Так как ∆ АВС равнобедренный, ВК=ВМ. Треугольник КВМ подобен ∆ АВС по пропорциональным сторонам и углу между ними. Коэффициент подобия k=ВМ:ВС=1/3, откуда КМ=АС:3=18:3=6 (ед. длины).
ИЛИ по теореме Менелая для ΔВСD и секущей АМ ⇒ CM/MB • BO/OD • AD/AC = 1 ; CM/MB • 1 • (9/18) = 1 ⇒ CM/MB = 2
Аналогично для ΔABD и секущей КС ⇒ AK/KB = 2
Значит, BK/KA = BM/MC = 1/2 ⇒ ΔКВМ подобен ΔАВС по двум пропорциональным сторонам и равному углу между ними: МК || АСВК/АВ = ВМ/ВСМ= МК/АС ; ВМ/ВС = МК/АС1/3 = КМ/18 ⇒ КМ = 18/3 = 6 ОТВЕТ: 6
Биссектриса делит угол пополам, т.е. ∠ABD = ∠DBC; ∠BAD=∠DAC.
1)![\sf \angle \,BAD=\frac{1}{2}\angle\, A=\frac{1}{2}\cdot 50^\circ=25^\circ](/tpl/images/0365/6958/f1ea9.png)
И рассмотрим треугольник ABD в нем сумма углов должна быть равна 180°,т.е.![\sf \angle \,ADB=180^\circ-25^\circ-50^\circ=105^\circ](/tpl/images/0365/6958/d0524.png)
2) Аналогично с примером 1)
3) Сумма углов треугольника ABC равна 180°, т.е. ∠A+∠B+∠C=180°.
∠A + ∠B + 130° = 180°
∠A + ∠B = 180° - 130°
∠A + ∠B = 50°
∠ADB = 180° - 1/2(∠A + ∠B) = 180° - 1/2 * 50° = 180° - 25° = 155°
4) Аналогично с примером 3)
∠A + ∠B + ∠C = 180°
∠A + ∠B +
= 180°
Тогда