Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Пусть (.) K - точка, о которой идет речь в условии,
(.) N - точка пересечения высот треугольника (ортоцентр).
Рассмотрим прямоугольный тр. ΔKNB, в котором угол при вершине N прямой. NB - 2/3 h - высоты тр. ΔABC. KB - данное нам расстояние - 10 см.
Найдем высоту: h = a√3 / 2 = 6/2 * √3² = 3*3 = 9
Тогда 2/3 h = 6.
А значит, расстояние от точки до плоскости тр.:
KN² = 10² - 6² = 64 = 8²
KN = 8.
ответ: расстояние от точки до плоскости треугольника равно 8 см