Окружность проходит через вершину а прямоугольника abcd и касается сторон bc и cd в точках м и nсоответственно. известно, что вм=24, dn=7. найти площадь прямоугольника abcd.нужно только
Сделаем рисунок. Обозначим точку пересечения окружности со стороной АВ буквой К, а со стороной АД - буквое Е. Соединим эти точки. Вписанный угол КАЕ - прямой, ⇒ КЕ- диаметр окружности. Проведем через N и центр окружности О прямую HN. Она параллельна АD, т.к. ОN - радиус, проведенный в точку касания и перпендикулярен стороне СD. Соединим О и А радиусом ОА. АН=ND =7 как стороны прямоугольника АНND. ОН=ВМ=24, т.к. ОМ⊥ ВС как радиус, проведенный в точку касания к ВС. Из прямоугольного треугольника АОН найдем гипотенузу АО, которая является радиусом окружности: АО²=ОН²+АН²= 576+49=625 АО=√625=25 ОN=r=АO=25 MC=ON=25 ВС=ВМ+МС=24+25=49 СD=CN+ND=25+7=32 S (ABCD)=BC*CD=49*32=1568 ( ед. площади) ------ [email protected]
Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Обозначим точку пересечения окружности со стороной АВ буквой К, а со стороной АД - буквое Е.
Соединим эти точки.
Вписанный угол КАЕ - прямой, ⇒ КЕ- диаметр окружности.
Проведем через N и центр окружности О прямую HN. Она параллельна АD, т.к. ОN - радиус, проведенный в точку касания и перпендикулярен стороне СD. Соединим О и А радиусом ОА.
АН=ND =7 как стороны прямоугольника АНND.
ОН=ВМ=24, т.к. ОМ⊥ ВС как радиус, проведенный в точку касания к ВС.
Из прямоугольного треугольника АОН найдем гипотенузу АО, которая является радиусом окружности:
АО²=ОН²+АН²= 576+49=625
АО=√625=25
ОN=r=АO=25
MC=ON=25
ВС=ВМ+МС=24+25=49
СD=CN+ND=25+7=32
S (ABCD)=BC*CD=49*32=1568 ( ед. площади)
------
[email protected]