Пусть одна сторона будет х (см), тогда вторая сторона будет (х+9) см. Периметр равнобедренного треугольника равен 45 см. Составим уравнение: x+x+x+9+9=45 3x=45-18 3x=27 x=9
Итак, стороны треугольника будут 9 см, 18 см, 18 см
Каноническое уравнение прямой, проходящей через точки А(х1;у1) и В(х2;у2): (X-x1)/(x2-x1)=(Y-y1)/(y2-y1). направляющий вектор этой прямой: p{p1;p2}, или p{(x2-x1);(y2-y1)}. Тогда вектор нормали (перпендикуляр к) этой прямой: n{p2;-p1} или n{(y2-y1);-(x2-x1)}. Этот же вектор - направляющий вектор для прямой L, проходящей через точку М((x1+x2)/2;(y1+y2)/2) - середину прямой АВ. Формула для уравнения прямой, проходящей через точку M((x1+x2)/2;(y1+y2)/2) и имеющей направляющий вектор рm{(y2-y1);-(x2-x1)}, то есть уравнение прямой L: (X-(x1+x2)/2))/(y2-y1)=(Y-(y1+y2)/2)/-(x2-x1) - каноническое уравнение. Или: X(x2-x1) + Y(y2-y1) -(1/2)*[x2²-x1²+y2²-y1²] - общее уравнение с коэффициентами А=(x2-x1), В=(y2-y1) и С= -(1/2)*[x2²-x1²+y2²-y1²].
Второй вариант (для тех, кто еще не знает о направляющих и нормальных векторах, но знают о различных видах уравнений прямых): из канонического уравнения имеем: X(y2-y1)-x1(y2-y1)=Y(x2-x1)-y1(x2-x1) => Y(x2-x1)=X(y2-y1)-y1(x2-x1) => Y=X((y2-y1)/(x2-x1) -x1(y2-y1)/(x2-x1)+y1. Это уравнение прямой с угловым коэффициентом k=(y2-y1)/(x2-x1). Условие перпендикулярности прямых: k1=-1/k. Уравнение прямой L, перпендикулярной прямой AB и проходящей через точку М((x2+x1)/2;(y2+y1)/2)) (середина отрезка АВ), находим по формуле: Y-Ym=k1(X-Xm) или Y-(y2-y1)/2=-((x2-x1)/(y2-y1))*(X-(x2+x1)/2) отсюда общее уравнение прямой L: X(x2-x1)+Y(y2-y1)-(y2²-y1²)/2-(x2²-x1²)/2=0 или X(x2-x1) + Y(y2-y1) -(1/2)*(x2²-x1²+y2²-y1²).
Для проверки решения возьмем точки с реальными координатами и построим график(смотри приложение).
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
Составим уравнение:
x+x+x+9+9=45
3x=45-18
3x=27
x=9
Итак, стороны треугольника будут 9 см, 18 см, 18 см