Из ΔAMB по теореме косинусов : AB² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMB (1) ; Из ΔAMC : AC² =AM² +(BC/2)² -2AM*(BC/2)cos∠AMC ; но cos∠AMC =cos(180° -∠AMB) = - cos∠AMB поэтому AC² =AM² +(BC/2)² +2AM*(BC/2)cos∠AMB (2) ; суммируем (1) и (2) получаем AB² +AC² =2AM² + BC²/2 ⇔4AM² =2AB² +2AC² -BC² ; но BC² =AB² +AC²- 2AB *AC*cosA поэтому : 4AM² =AB² +AC² + 2AB *AC*cosA.
* * * Можно продолжать медиана MD =AM и M соединить с вершинами B и C. Получится параллелограмм ABDC , где верно 2(AB²+AC²) = AD² +BC² ⇔2(AB²+AC²) = 4AM² +BC².
Для медианы CN : 4CN² =CB² +CA² +2CB*CA*cosC. Если ΔABC равнобедренный CB =AB ⇒∠C =∠A , то 4CN² =4AM² или CN =AM .
АВСД-это правильная треугольная пирамида(смотри рисунок). В основании правильный треугольник. Значит точка О является одновременно точкой пересечения медиан, высот и биссектрис треугольника основания. А поскольку боковые рёбра по условию равны, то они имеют одинаковый наклон к основанию и опущенная из вершины пирамиды высота ДО приходит в эту точку О. Проводим апофему ДК. Получим прямоугольный треугольник АКД, поскольку ДАВ=45 по условию, то и АДК=45, отсюда АК=ДК. В точке пересечения медианы делятся в отношении 2/1 считая от вершины. По теореме Пифагора находим Н, потом ребро ДС и cosДАО=корень из2/корень из 3.