Основою призми є прямокутний трикутник, катет якого дорівнює 8 см і прилеглий до нього гострий кут 30 градусів. діагональ бічної грані, що містить катет, нахилена до площини під кутом 45 градусів. знайдіть площу повної поверхні призми.
Площадь полной поверхности призмы равна сумме площади боковой поверхности и площади двух оснований. Основание призмы равно половине равностороннего треугольника, т.к. один из углов прямой, другой равен 30°, а третий, как следствие, 60°. Следовательно, площадь двух оснований призмы равна площади полного равностороннего треугольника с высотой 8. Площадь равностороннего треугольника, выраженная через высоту, S=h ² : √ 3= 64 : √ 3 Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания. Высота равна 8, т.к. диагональ грани со сторонами, равными высоте и катету=8, образует со сторонами грани угол 45 градусов, и стороны грани равны. Дальнейшие вычисления особой сложности не представляют, сумеете сделать их самостоятельно.
Рассмотрим прямоугольный треугольник АСМ. Гипотенуза АС=4 Катет СМ=2, значит ∠САМ=30°. Катет против угла в 30° равен половине гипотенузы. ∠САМ=∠ВАК=30° (АК-биссектриса и делит угол пополам), значит в треугольнике АВС ∠А=60°, ∠В=30° ( сумма острых углов прямоугольного треугольника равна 90°) В прямоугольном треугольнике АВС против угла в 30° лежит катет АС=4, значит гипотенуза АВ=8. В прямоугольном треугольнике АВК против угла ВАК, величина которого 30°, лежит катет ВК, равный половине гипотенузы АВ. ВК=4. О т в е т. 4.
Пусть внешний угол треугольника А = внешнему углу треугольника С и = 120°, тогда найдём внутренние углы треугольника. Рассмотрим треуг АBС, по свойству внешнего угла, внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним. По теореме о суммах внешних углов, внешний угол А + внутренний угол А = 180°, угол А = 180-120=60° так же и внешний угол С - угол С треуг ABC= 180-120=60° А т.к. сумма углов треугольника = 180°, то 180-(60+60) = 180-120=60° - угол B А если все углы треугольника равны, то треугольник равносторонний. ЧТД )))
Площадь полной поверхности призмы равна сумме площади боковой поверхности и площади двух оснований.
Основание призмы равно половине равностороннего треугольника, т.к. один из углов прямой, другой равен 30°, а третий, как следствие, 60°.
Следовательно, площадь двух оснований призмы равна площади полного равностороннего треугольника с высотой 8.
Площадь равностороннего треугольника, выраженная через высоту,
S=h ² : √ 3= 64 : √ 3
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Высота равна 8, т.к. диагональ грани со сторонами, равными высоте и катету=8, образует со сторонами грани угол 45 градусов, и стороны грани равны.
Дальнейшие вычисления особой сложности не представляют, сумеете сделать их самостоятельно.